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An algorithm is proposed for realizing the method of characteristics for the ana- 

lysis of one-dimensional wave processes excited by the edge effect and describ- 

ed by a quasilinear system of differential equations having several pairs of fam- 
ilies of characteristics. The algorithm is written in Lagrangian coordinates for 
conical and cylindrical shells, on the basis of a quasilinear system of sixth order 

equations of a geometrically nonlinear theory of Timoshenko type [lL 

The algorithm presumes the absence of strong discontinuities, i. e., of discon- 
tinuities in the first derivatives of the shell displacement, which will limit the 
class of admissible edge effects and permit carrying out the analysis up to the 

appearance of the first shock in problems where the shocks originate during wave 
propagation. Despite this, the proposed algorithm permits elucidation of speci- 
fic properties of the wave solution in nonlinear theory. An illustrative example 
is given for a conical shell. 

In speaking of the one-dimensional transients of conical and cylindrical shell 
deformation. we shall have in mind the axisymmetric processes of these objects 
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and the plane deformations of an infinite cylindrical shell (ring). 
One-dimensional transients of conical and cylindrical shell deformations have 

been investigated in a wave formulation in the past decade by using various 

models and methods within the scope of linear shell theory b-43. 

Fast-moving conical and cylindrical shell deformations have also been inves- 
tigated within the scope of nonlinear shell theory 15-l 0.111, but methods to an- 

alyze the specific properties of traveling waves are still almost lacking. 

Indeed, mainly the application of 

a) Methods of reducing the shell to a system with a finite number of degrees 

of freedom ll2-161; 
b) Finite-difference methods of integration by using a mesh determined in 

advance without clarification and taking account of discontinuities in the solut-.: 

ion [17-191; 

c) The method of lines [rays] with subsequent integration of a system of Runge- 
Kutta ordinary differential equations PO]; 

d) A method of approximating the tangential displacements by the linear 
“column” solution with the subsequent calculation of the normal displacements 

from the nonlinear equations 121-231, is found in existing papers which are dev- 

oted primarily to the analysis of dynamic stability problems. 
These methods turned out to provide results in stability analysis, but do not 

allow complete characterization of the solution as a nonlinear transient of wave 

propagation. Hence, there ls little information on how a geometrically nonlln- 
ear wave process, which is known to be small in some initial stage of the motion 
will differ from a linear wave process, will deviate more and more from the lin- 

ear with the growth of time am become qualitatively different for high enough 

values of the time. Not explained are the limits of the well-founded applicab- 

ility of linear theory, as well as the role of the shocks for a change in the char- 

acter of the wave transient, including the appearance of large normal displace- 
ments (loss of stability). 

It is shown that the mentioned questions can be clarified by using the method 

of characteristics within the scope of nonlinear theory. However, an algorithm 
is needed for this, which is adapted to the case of the presence of several pairs 
of families of characteristics (there are three such pairs in a nonlinear theory of 

Timoshenko type in the case of one-dimensional wave processes). 
The algorithm proposed below consists of the following elements: 

a) The representation of the initial equations [l] as a quasilinear system of 

first-order equations in the first derivatives of the displacement and additional 
formulas to calculate the displacements which are also in the coefficients of the 
system of equations; 

b) The construction of equations governing the direction of the characteristics 
and the differential relations on the characteristics; 

c) An algorithm of the iterative product of a computation by the second me-. 

thod of Masseau in the case of the presence of several pairs of families of char- 
acteristics. 

Let us note that the method of characteristics has been applied in p4-261 
within the scope of a linear shell theory of Timoshenko type. The directions of 
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the characteristics are constant in linear theory and independent of the solution. 
but in a theory of Timoshenko type two out of the three pairs of families of cha- 
racteristics coincide. During the calculation of the linear solution (for compar- 
ison with the nonlinear solution), it was noted in passing that the difference be- 

tween linear solutions obtained by the method of characteristics in 125,263 is a 
result of an error in one coefficient of the equations in p5J. 

1, br!tirl equations, Let us consider conical and cylindrical shells. Let Iz.be the 
shell thickness, X, the radius of the middle surface at the shell endface, where theef- 

feet is applied.0 = con&is the angle between the axis and the generator of the middle 
surface of the conical shell (0 = @in the case of a cylindrical shell), E is the elastic 

modulus, Y the Poisson’s ratio, /CT ‘a shear coefficient in a shell theory of Timoshenko 

type, PO. the density of the shell material in the undeformed state, Rj (j = 1, 2) the 
radii of curvature of the middle surface, t the time, i dimensionless time. Let a co- 

ordinate system with the Lamd parameters 

A =: h = ,const, B = R, + uh sin 9 

be selected on the shell middle surface. Hence 
v = &I,+; cs = ,??I; [2 (1 '+. v) p$'/' 

RI’= 00, 82 = ‘R, @OS 0)-l + ah tg 0 

Let us consider axisymmetric wave processes dependent on the Lagrange coordinates 
a and 7. LeUorbe the dimensionless (divided by h) tangential displacement, wr the 

di mensionless (divided by 6) normal displacement, and ws the angle of rotation of the 
normaL 

Let us introduce the notation 

%&A =(...)‘, .~%&L(*..)*, kL-++y) 

6 = hR,-‘, y = B’B-‘, r) = yw,+ 6% 

and the new unknown terms 

V 1 = q*, I’, = w;, v, = zc,‘, V, = Wl’l‘ Vb = w,‘, V, = w,’ (1.1) 

Utilizing the nonlinear equations fl] and the relationships 

w,‘. = r&*, (i = i, 29.3) 

it is easy to derive the matrix equation 

I\i*+MV'-G=O 

and the formula 

Wi = jv{+,da + V,llr (i = iv 2.3) 

(1 .a 

(1.3)' 

where 1’ is the unit matrix and Vi’>& G are the following matrices: 

r T/‘, ' 0 0 o--@,l-q2-o~3 010 

V* 0 0 o-@cD,l-@cpl~ 0 a0 

v3 0 0 o-a31 0 -aci>,, 030. 

v = v, ) &I= -4 0 0 0 0 0 ,G= 0 (1.4) 
V6 0-100 0 0 0 
.v,, *oo-10 0 0, ,o, 
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The following notation has been used in (1.4) 

@t, = I%-~ (1 + 3V, + vqf, (I>,” I = kT2wR + k-217, 

a),3 = 1/12k-2(2VG + vpa) CD,, = d$2, (D,, =I liT2 + k-2 (V, + q) 

@,I = 42*,,, ax7 = k-2 (; + ZTr,) (1.5) 

cf>,, = k+y IV, - ‘I + ‘i, (3 + Y) ( vd2 - $) -I- ‘i, (I - v) V,Y -;- 

+~c-%V’,.(1 + Vf4 + q)+kT2 [(2/u, -t- V,) v, -I- y (I&j + V,) w,l+ ‘ll,k--2X 

x 1(1 i Y) VG2 - y jY’O3 -I- VII,) WJ (1.6) 

Q,, = k-Zy (1 + v) v,v, - k-26 I( 1 + 3/211) 11 + v (1 -;- ‘i2V, -+ v) I’,, - 

-1/2%21 + W [(I’, $I yw,) (1 + V,) i- y1’,1 - ‘/l,k-2pS (yl~~~ + VI',) w3 

f&, = k-2y (1 + ZV, - 2q) v6 - k-y (1 - ~$7~ -+- vq) tug + 

C,k-2y6vV,ws - 12kT2 ((1 -I- 2VJ ujJ + (1 -+ lid) I’,1 

The stress resultants, transverse forces, and moments can easily be expressed in terms 
of the dimensionless quantities introduced above. For example, in the transverse sectf- 

on a = cons&the tangential stress resultant Ti,, the transverse force N, and the mom- 

ent nf,, can be represented as follows: 

T,, = E, rv, + 1/,v,s + Y (11 +‘lnl)s + 1/‘41)) 9 /svss + K (to,2 4 w,fr,)f-f- 
+ Dir2 ( VB2 + Y’i’ ir6tL7n). 

N, = E, I(V,V, i- vql’,) + K (% + b’, + ~4~~41 
Ml1 = DIri [V, + 2%‘,1/‘6 -I- vywR (1 + I’, + 1111 (1.7) 

E, = Eh (1 - v2)-l, I{ Z k’/iT’, II -- Rh” [la (1 - +)I-’ 

In substance, the matrix equation (1.2) is a quasilinear system of six first-order equ- 
ations in v, (a, .r) (j = 1, 2, . . . . (;), The displacementszuj (j = 1, 2, ;j)are de- 

fined in terms of v’i (j = 1, 2, . . . C;)by (1.3). Six initial and three boundary condit- 

ions in the endface sections of the shell must be formuIa~d upon application of (1. 2ft 

(1.3) in wave propagation problems. Since a is a Lagrange coordinate, then a = 

ZG const in the endface sections. 

The zero initial conditions 

WJ (a9 0) = 0, VJ (a, 0) = 0 ti = 1, 29 3) (i .8) 

are kept in mind below in the specific discussions, From the first group of conditions 

(1.8) we have 
vi (a, 0) = 0 (i = 4, 5, 6) 0.f)) 

The boundary conditions fortr -2 u (,, (to = con&can be formulated as follows, for 

example: 
Wl (%l r) = 61 (r) or T,, (~1 r) = g, (r) 

w!2 (a,, r) = G2 it) Or AT, (%t r) = fi6 (r) (1.10) 

ws (as1 r) = ga W or Jr,, (r&s, r) = g, (r) 

where 6i (z)are given functions of t.lIf wi (u,,, T) = 61 (r) (i = 1, 2, 3),then 

f’i (a,, z) ;= g. (r) fi -i,2,3) jl.ll) 

The passage from the nonlinear to the linear formulation of the problem means neg- 
lecting all, in (1.5). and the square terms, in (1.6). dependent on 17, and 
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1Ui (j = 1, 2, . . . . 6; i = 1,2,3). Let ?ij be coefficients obtained by the means 
mentioned trom the expressions <pi,, then to go over to the application of linear theory 

in (1.4), the CDil should be replaced by the following coefficients rJij’ 

‘pII = I?, ‘pl2 = ‘plq = 921 = q,, = 0, (p22 = kT2, (p33 = k-l (1.12) 

q’l” = Py (V, - q) + k’36vV,, 920 = kT2 (VII + I’w, + yv.5) - 

--/C26 (q + vv4), (p3,, = k3yV6 - k-2y2w3 - i2kT2 (w, + v,) (1.13) 

2; Equationa to reUse the method of chrrrcterintlca, It is known C27] that the dir- 
ections of the chracteristics of a matrix equation of the form (1.2) can be determined 
by utilizing the eigenvalues of the equation 

11 hl -Ihl=O (2.1) 

from which follows the equations 

?Ls - ah’ + bh2 - c = 0 (2.2) 

a = a’I1 + @22 + Q)339 b = @11@33 + @I1033 + @33@33 - cD,22-12U,,32 

c = 0)11(&2@33 - @)a@~~~ - 12(&2(DIs2 (2.3) 

The characteristics in thea,t-plane are the curves du / dt = A, (j = 1, 2, . . . , 6). 
Here h, are the roots of (2.2). The condition of hyperbolicity of the initial system 

(1.2) is identical to the condition of all roots in (2.2) being real, and can be represent- 
ed as 

(V2q)S - W3PY < 0 (2.4) 
p = ‘l,a* - b, q = 2/27a3 - ‘l,ab + c (2.5) 

The roots of (2.2) can be calculated from the formula 

A, = t {il& + 2. (V3p)“‘co9 [l/s (cp + 2~Jw”9 (n = 1,2,3) (2-W 

q = nrc cos’[ l/3q (1/3p)-‘!m] (2.7) 
Let the rootp of (2.6) be enumerated as follows: 

As > &z > Aa > ‘a* > Aa (2.8) 

The functions <Dijdepend on the desired solution, hence the 5 also depend on the de- 
sired solution. 

The matrixM - Ihis singular, hence,there exists the eigenvector f27] 

C(i) = {Cl(‘), C2(i), C3(i), C4(t), CsW, f$(i)) 

for which 
CWAI = &C(i) (i = 1, 2,..., 6) (2.9) 

Equation (2.9) decomposes into the systems 

I 

ajs - ‘I),, - cb2, - ‘D,, C,(j ) 

- % hj2 - cI)33 0 

II II 

C,(j) = 0 (2.10) 
- CD,3 0 hj2 - 033 C,(J) 

(p = cy’ (k = 1,2,3) (2.11) 

C,W = - hiC~“)~ C,(‘) = - hiCz(‘), C,(‘) = - hiC,(i) (i 2 I, 2,..., 6) (2.12) 
The matrix equation (2.10) has the solutions 

c,tn = (- l)n-k $!L C,(j) 0’=1,2,3; k=i,2,3) (2.13) 
n 
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whereNk, N,are minors of the matrix of the system (2.10) obtained by deleting its 
k: th and n-the column, respectively. Let us give the components C:‘) = 1 &$ = 

= 1, cf’ = 1, and let us evaluate the remaining components with the subsciipis 

k = 1, 2, ,jby (2.13). We have 

cf ’ = q2 (h2 - Q&)-l, CFf = <I>,, (A,2 - CD,,)-1 

cl”’ = f2@,, (a,’ - @,,) I(&’ - (DI1) (hzZ - ‘D,,) -@,,3]-1 (2.14) 

cf’ = 12@,,@,, if?+” - ‘D,,) (A_” - CL,) - ‘I+,“]-’ 

cl”’ = a,, (AZ2 - 03,) [(Aa2 - a>,,) (A,2 - m3.J - 1X&‘]-1 

c$@ = @#,,a [(&I2 - $1) (A: - (I>,,) - 12(i&q-1 

All the remaining components are evaluated by means of the relationships (2.12). Mu- 
ltiplying (1.2) on the left by the eigenvector CC’), we obtain 

Cti)V’+ Ct+)lMV’ - CtitG = 0 

Taking account of (2.9), we have 
(Ji)(D’vi) -(JUG = 0 (2.15) 

u’v’ = V’ + hiV’ (2.16) 
Equation (2.15) determines the differential relations on the characteristics. 

We obtain the characteristic directions to the accuracy of linear theory from (2.1) 
after having replaced the coefficients Qii from (1.5) in the matrix 31 by the coefficie- 

nts_ rfi,(l. 12)(i, j = l’, 2, $).These directions are constant 

A, :z $ = I;-‘, h, = ?<T, ha = -f2T, & = h, zzz -4-1 (2.17) 

This means that multiple roots appear in the linear formulation. Let us determine the 

eigenvectors from (2.10)-(2.12). where the djij in (1.5) have been replaced by the$j 
in (1,12) and from the condition that linearly independent eigenvectors would corresp- 

ond to the multiple roots. Such solutions of (2.10) are 

Cl(l) = 1, C,(l) =I c,c') = 0, C,(2) zz.2 cp) zz 0, c,w = I, c&3) = C&3' = 0 

C&3) = 1 (2.13) 

3. Algorithm of the numeric&f rcrliartion of the msrhod of chrrrcteristicr, Follow- 
ing Courant r28], let us utilize a matrix description of the algorithm. The unit vector 

SQ) (i = 1, x, . . . . 6) in the direction of the i-th characteristic has the following pro- 

jections in the at-plane: 

A, (1 f hi2)-“’ na U-OCby (1 + &')-"* rfa 7-0~ (3.1) 

The derivative along the &th characteristic, i.e., in the direction s@) has the follow- 

ing form: 
60). vv = hi (1 + h,yplv + (1 + j&fhV* (3.2) 

Utilizing the notation (2.16), we obtain 

SW. VV =I (1 + &2)-s (Divi) (3.3) 
Let us construct the algorithm of a finite-difference integration of the matrix equat- 

ion (2.15), and let us evaluate wh- by means of (1.3). Let us utilize the so-called 

standard technique for which the main mesh in the aT-plane is selected along the 
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characteristics having the directions h,, ?,a. Let us introduce the numbering of the nodes 

in this mesh indicated in Fig. 1. Let us consider the triple of nodes I’,,,,, Pm_r,,,, 
Pm,n_l.Let the coordinates of the nodes P,_r,,, P,,,,_rand the quantities Vj (j = 

= 1, 2, . ..\ 6), wk (I+= 1, 2.~3) at these nodes be known, and the coordinates of the 

node P,,, and the quantitiesv, (i = 1, 2, . . . , G), wk (k 7 1, 2, 3) at this node 
unknown and subject to calculation. For brevity in writing the computational algorithm 

Fig. 1. Fig. 2. 

let us introduce the following notation for the nodes (Fig.2) 

17 tlk,?a S x, ~,,,-1= Pl, en_1,n = PC 

Let US still introduce the auxiliary points&, pa, p4, p6as is indicated in Fig.2. In the 
finite-difference approximation, the derivative along the i- th characreristic has the 
form 

S(I).* 9Y (pi*) = [ \’ (X) - V (Pi)] [ (1 + hi’)“zATi]-’ (i = i, z,,.., 6); (3.4) 
Aq = z (X) - ‘c (pi) (3.5) 

andVV (pi*)should be understood to be the middle derivative along the i-th character- 
istic on the segment between the nodes x’ and pi. Equating (3.3) and (3.4) we obtain 

D’V’ (Pi*) = [V (X) - \’ (pi)] (AT,)” (3.6) 

Substituting (3.6) into (2.15). we have the following finite-difference equation in the 
matrix form 

Cli) (pi*) V (X) = Cti) (/Ii*) [ V (pi) + G (pi*) Ati] 
. 

(3.7) 

Here and henceforth,G (pi*), h (pi*), C(f) (pi*)shOuld be understood to be quantit- 
ies calculated by means of (1.4). (2.6) and (a. 13), respectively, in which (in conform- 

ity with the second method of Masseau [29]) the following approximate representations 
have been introduced 

I/‘, - Y k (pi*) = l/Z LT’k (x) + j’li (Pi)17 Wj = ?Oj (pi*) = ‘is [U’j (X) + Wj (pi)] 

q = a (Pi*) = ‘/a Ia (X) + a (Pi)1 (3.8) 
Let us now eliminate values of V at the auxiliary pointsp2, pa, PA, I’efrorn the syst- 

em (3.7). From geometric considerations it follows that 

t(x) = Ld(P1) - a (Pa) - A, (PI*) r (Pl) + A, (PO*) t (Pe) I IL3 (PO*) - h (PI*)1 

a(X) =a(po) - It(s) - ~(Po)l~o(Pe*) (3.9) 

01 (pi) = {a (X) + lz (PO) - t (s) - (’ (P6) - ‘(PI)) (a (PS) - 
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- a (pJ)-‘a (Pe)l hi (Pi*)) 11 - tt (PO) - f (PI)) - 0 (PI))-‘& (Pl*)l-’ 
t (Pi) = la (Pi) - a (X)1 lai (Pi*)l-’ -I- r (X) (3.10) 

We find the values of the desired functions at the point pi by interpolation between the 
points p1 and pet which results in thefollowing formulas: 

‘Vk (Pi) = (I - Qi) vA bd + QiVA (PI), WA @i) = (1 -f& wA(ps) + 

$- QiWk (PI) (3.11) 

Qi * [a (Pe) - a (~41 [a (PA - a (PJ-~ (3.12) 
Substituting (3.10) into (3.6), we obtain 

Cti) (Pi*) V (X) = C(‘)(P~*) [(i - Qi) V (PO> + QiV (~1) + G (pi*) ATi] (3.13) 
(i = 1, 2, 3 ,...I 6) 

We take the integrals (1.3) along the characteristics with the directions h, and &,by 
means of the formula 

ZDk (X) = l/s {[ iJ k+3 (PI*)~, (Pl*) + v, @,*)I At, + w,i (~1) i- 

f [ vk+a (h”) he (PO*) + I/k (&I*) 1 At, -t Wk (&)I 

(3.14) 
jk : I, 2, 3) 

The problem now is to produce an iterative algorithm to find such coordinatesa, z of 
the nodeX,as well as the quantitiesvj(X), i = 1, 2,.. liandwl, (dy), k = 1, 2,3,for 

which the equalities (3.13). (3.14) are satisfied with a numerically assigned accuracy. 
Let us consider the calculation of the zero approximation, utilizing the approximat- 

ion formulas 
A;; (pi*) - h, (PI), '"j(]~i") = Wj(pl)v vh.(pi*)=vi;(pl) (i=l12, 3) (3.15) 

IL!; ((‘i*) Z= h, (/Ie), ll’j (pi’“) = Wj (pe), F/k (Pi*) = vk (/IS) (i = 4, 5, 6) 

in the following way. 
First, let us calculate the coordinates of the node X in a zero approximation by means 

of (3.9), in whose right sides the AA (pi*)are approximated in the form (3.15). Then 

let us evaluate Wj (X) by (3.14) utilizing the approximation (3.15) in the right side. 
The Azi are hence calculated by means of (3.5). Applying the approximation (3.15). 

we findC(‘) (pi*)in a zero approximation. Then we evaluateG (pi*)by utilizing the 
a (X), Wj (X)in the zero approximation already found and by approximatingT/rA (pi*) 

by (3.15). It now turns out to be possible to calculateV (X) in a zero approximation 

form (3.12). 
The improved coordinates of the node X,the improved vectors C(i) (pi*), G (pi*), 

\’ (S) are calculated alternately in the next approximations. Formulas (3.8) and all 

the necessary quantities are used to calculate each quantity, in the approximation in 

which they are available at this stage of the iteration process. The iteration is contin- 

ued until the difference in the last and next-to-last approximations of the desired quan- 
tities becomes less than some given value. 

Let us examine the question of imposing the boundary conditions at the shell edge 

u = a,,, ug = collst,.The boundary a = a,is a time-like line in the a T-plane, and 
hence,only three of the six vectors sci)are directed to one side. Therefore, three equ- 

ations with six unknown Vi follow fr@m the matrix equation (3.13) on the boundary 

CL = czO. We add the three boundary conditions (1.10) to these three equations, where- 
upon we have a system of six equations in six components of the vector V.Let us constr- 
uct the following vectors 

G,” = aijVi, Vi* = (~ - Sij) pi (i = 1, 2, 3 ,..., 6) 
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where 6ij is the Kronecker symbol, and j is the subscript taking on the three values 

which correspond to the three components v,, given on the boundary, or expressed on 

the boundary (by using the boundary conditions) in terms of given functions and the re- 
maining components of the vector V. In other words, V* is an unknown three-component 
vector, and’G* is a three-component vector whose components are either known, or 

expressed in terms of the components Vi. 
Representing the six-component vector v as 

V=V*+G* (3W 
we obtain the following equation from (3.13): 

Cti) (Pi’) V* (X) = C(j) (pi*) [(I - Qi) v (PO) + Qiv (PI) + 

+ G (pi*) AZ; - G* (X) J (3.17) 

where X z Pm.m, PI E Pm-l. m-l in the z > 0,a >.a,domain denote the boundary 
points.P, z Pm-l,m, i = 4, 5, 6andX E Pm,m,Pa E Pm-1,m-1 denote the bound- 

ary points,Pi = Pm,m_l, i = 1, 2, &If some of the three dimensionless displacem - 

ems are not given on the boundary a = a0 then these unassigned dimensionless displac- 

ements are calculated by (3.14). which becomes on the boundary 

WA (X) = IVk+3 (Pi*) hi (Pi*) -b vk (P+*)J Ari + wk (Pi) (3.18) 

ForTaO, a>a,in(3.18)oneshouldtakei=~6andi=1forx>0,a<a0 
The interpolation process on the boundary can be accomplished just as for the interior 

points described above. 

4. Nt~~eric~l exrmple. Let us consider the wave transient for v > Oin the semi-in- 
finite (a 2 0)conical shell. Let us give the zero initial conditions (1.8) and the follow- 

ing functions in the boundary conditions (1.10): 

ga (r) = l?s (r) = 0, gc (‘c) = 2Tn-l arctg (mr) (4.1) 

Let us represent the vector V,on the boundary in the form (3.16). where in this case 

Vl(O, v) ’ 0 
0 vz (0, v) 

V’(O,v)= ; G’(O,s)= ‘s(‘,‘) 
y4 (0, ‘5) 

(4.2) 

KS (0, ‘c) 
li 

0, 
L Ve(O, r), 0 II 

From (1.11). (1.7) (4.1) follows 

vs (0, r) = v, (0, r) = 0 (4.3) 

V,(O, 7) =‘Fplgr (T)- “/Jr” (0,7)-y pl(O* 7)$_‘IzV(0. r)+ 

+ v4 (0, T) q (0, T)] -1/rvs* (0, T) - ‘/lZV2 (0, I) (4.4) 

In the linear formulation of the problem,(4.4) simplifies to the following: 

V4 (0, r) = E+ (7) - vq (0, T) (4.5) 

We present the results of a numerical computation obtained for a conical shell with 
the following values for the coefficients: 

0= -33, K/R,,=-[KC,, ,kTa=0.87, v=‘;/;, T~Bf~=0,01, m=5. 

Partitioning of the nodes with the spacing AZ, = 6.1, was applied along the front. The 
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coordinates of the nodal pointsP,.,,(Fig. 1) and the desired quantities at these points 
were found at a series of pointsm = 1, 2, 3, - - -along the characteristic with the direc- 

tion h,on each of which the computation was carried out alternately at the points 
n = 1, 2, 3 ,.... 

The computations were performed in parallel in a nonlinear and linear formulation, 
where the partitioning of the nodes on the first fronts = k-*awas identical. The results 
of the computation show that by nonlinear theory tT1 and J’, along the chracteristics 

with the direction &differ slightly in the initial stage from the J’, and ird from linear 

Fig. 3. 

theory. However, the characteristics of identical order 
number 111 by linear and nonlmear theory do not coinci- 

de in thea, z-plane. 
The quantitative difference between the linear and 

nonlinear solution grows as time increases in the initial 
stage, mainly for this reason. The qualitative difference 

between the linear and nonlinear solution occurs at the 
intersection of the characteristics atT = 3U(Fig. l), which 

results in the appearance of a discontinuity in the comp- 
onents ‘II9 1, of the nonlinear solution. In other words, 

a shock originates in this example for 7 =X~ . However, 
quantitative results by the nonlinear and linear theories 

differ noticeably in the initial stage of the motion only 
in a narrow band behind the first front (Fig. 3). The solid 

lines in Fig. 3 picture the linear theory results. and the 
dashed lines are linear theory for T = X, ‘c = 30. Let us 

note that the shock occurs at the first front always upon 

the application of a tensile type tangential effect, and 
never occurs upon application of a compressive type 

tangential effect. 
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BPECTRUM OF THE SYSTEM DESCRIBING OSCILLATIONS 

OF A SHELL OF REVOLUTION 

PMM Vol.35. No.4, 1971, pp.701-717 
A. G. ASLANIAN and V. B. LIDSKII 

(Moscow) 
(Received November 13. 1970) 

The relationship between spectra of moment and momentless [membrane] syst- 
ems of differential equations which describe the characteristic oscillations of 

shells of revolution is examined. 
For the eigenvalues of the lower series the oscillation theorem is proven. Con- 

ditions are found for which the lower series of frequencies of the momentless 
system has a finite limit point. 

A number of papers are devoted to finding the frequencies of characteristic oscillations 

of a thin shell by the small parameter method (see Bibliography). 
In this paper some mathematical problems are examined which are connected with 

the problem of finding the characteristic frequencies for a shell of revolution. In this 
case the characteristic oscillations with m waves along the parallel are described by the 

following system of equations 0, Sl; 

- un - fB’ y’ - mu+4v’ _ 
2B K > $‘+(I-G&&-g)]“+ 

mB’ 3-G + B’ -2v i-($,+--W’+ (&+&)‘w=hu 

i--o m -- ./fU 2 
(1 + 4 ut l--a l3l mB’3--a 

--- 2 u v’f u”yu- (0.~) 

Here 14, U, W are the projections of the displacement of a point on the directions of the 
meridian, the parallel and the normal to the shell, respectively; s is the length of the 
meridian arc, u 4 s < b: J!I (s)%s the distance from the meridian to the axis of rev- 
olution; If, (s) and II, (s) are the principal radii of curvature of the shell 

1 1 
F= - -d-m’ 

‘r/l - 17” 
//2= B ’ 

h=(l-G2)+p2, .p’I=$- 
,- - 

where E is Young’s modulus, CJ is Poisson’s ratio, 
(0.2) 

*/ is the density, p is the frequency 
of oscillations, i& is the thickness of the shell and p is the small parameter. The system 


